Tuesday, September 17, 2024

Every monotonic function on [a, b] is Riemann integrable

Theorem: 

Every monotonic function on [a, b] is Riemann integrable.

Proof:

Let ​\( f:[a, b]\to \mathbb{R} \)​ be monotonic function.
If f is constant function then obviously it is Riemann integrable.
WLOG, suppose f is strictly increasing.
\( \therefore f(a)<f(x_1)<f(x_2)<f(b), a<x_1<x_2<b \)
​\( \therefore f(b)-f(a)>0 \)​
Choose a partition of [a, b] for ​\( \epsilon>0 \)​ such that,
​\( P=\{a=x_0, x_1, x_2, … , x_n=b\} \)​ with ​\( \|P\|<\frac{\epsilon}{f(b)-f(a)} \)​
for ​\( [x_{k-1}, x_k], \|x_k-x_{k-1}\|<\frac{\epsilon}{f(b)-f(a)} \)​
Consider,
​\( U(f, P)-L(f, P) \)​
​\( =\displaystyle\sum_{k=1}^{n}(M_k-m_k)\Delta_{x_k} \)​
​\( =\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\Delta_{x_k} \)​
​\( \leq\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\|P\| \)​
​\( <\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})]\frac{\epsilon}{f(b)-f(a)} \)​
\( =\frac{\epsilon}{f(b)-f(a)}\displaystyle\sum_{k=1}^{n}[f(x_k)-f(x_{k-1})] \)
​\( =\frac{\epsilon}{f(b)-f(a)}\times[f(b)-f(a)] \)​
​\( =\epsilon \)​
​\( \therefore U(f, P)-L(f, P)<\epsilon \)​ 
​\( \therefore \)​ by Riemann criterion,
f is Riemann integrable.
Also Read: Riemann criterion for integrability  of a bounded function f defined on [a, b]

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

STAY CONNECTED

2,523FansLike
246FollowersFollow
2,458FollowersFollow

Most Popular

Recent Comments