Monday, December 23, 2024

Calculate the largest integer ​​\( n < 0 \)​​ so that ​​\( (1+i\frac{\sqrt{3}}{3})^n \)​​ is purely imaginary

Table of Contents

Question: 

Calculate the largest integer ​\( n < 0 \)​ so that ​\( (1+i\frac{\sqrt{3}}{3})^n \)​ is purely imaginary.

Answer:

\( (1+i\frac{\sqrt{3}}{3})^n \)​ 
\( =(1+i\frac{1}{\sqrt{3}})^n \)
\( r=\sqrt{1^2+{\frac{1}{\sqrt{3}}}^2} \)
\( \therefore r=\frac{2}{\sqrt{3}} \)
\( \theta=tan^{-1}(\frac{\frac{1}{\sqrt{3}}}{1}) \)
\( \therefore \theta=tan^{-1}(\frac{1}{\sqrt{3}}) \)
\( \therefore \theta=\frac{\pi}{6} \)
\( \therefore(1+i\frac{1}{\sqrt{3}})^n=[\frac{2}{\sqrt{3}}(cos\frac{\pi}{6}+isin\frac{\pi}{6})]^n \)
\( \therefore(1+i\frac{1}{\sqrt{3}})^n=(\frac{2}{\sqrt{3}})^n(cos\frac{n\pi}{6}+isin\frac{n\pi}{6}) \)
Since, the number is purely imaginary,
\( \therefore(\frac{2}{\sqrt{3}})^ncos\frac{n\pi}{6}=0 \)
\( \therefore cos\frac{n\pi}{6}=0 \)
we know that, ​\( cos\theta=0 \implies \theta=(2m-1)\frac{\pi}{2} \)
\( \therefore \frac{n\pi}{6}=(2m-1)\frac{\pi}{2} \)
\( \therefore n=3(2m-1) \)
Since, ​\( n<0 \)
\( \therefore 3(2m-1)<0 \implies 2m-1<0 \)
\( \implies m<\frac{1}{2} \)
Choose, ​\( m=0 \)
\( \therefore n=-3 \)
RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

STAY CONNECTED

2,523FansLike
246FollowersFollow
2,458FollowersFollow

Most Popular

Recent Comments