Monday, December 23, 2024

Linear Transformation Part II – Inverse Linear Transformation and Isomorphism

Definition (1): 

A function T from V into W is called invertible if there exists a function S from W to V such that TS is an identity on W and ST is an identity on V.
i.e. ​\( TS=I_w, ST=I_v \)​

Definition (2): 

T is invertible, if
(i) T is one-one i.e. ​\( T(\alpha)=T(\beta) \implies \alpha=\beta \)​
(ii) T is onto i.e. for any ​\( \beta \in W, \exists \ \alpha \in V, \ such \ that \ T(\alpha)=\beta \)​

Notation:

If T is invertible and S is an inverse of T, then ​\( S=T^{-1} \)​.

Theorem (1):

Let V and W be vector spaces over the filed F and T be a linear transformation. Then ​\( T^{-1} \)​ is a linear transformation from W into V.

Proof:

Claim that ​\( T^{-1}:W \rightarrow V \)​ is a linear transformation.
Let ​\( \beta_1, \beta_2 \in W \)​ be any vectors and ​\( a \in F \)​ be any scalar.
To show that ​\( T^{-1}(a\beta_1+\beta_2)=aT^{-1}(\beta_1)+T^{-1}(\beta_2) \)​
Let ​\( \alpha_i=T^{-1}(\beta_i) \)​
i.e. ​\( \alpha_i \)​ is unique such that ​\( T(\alpha_i)=\beta_i \)​,        ​\( (i=1, 2) \)​
Since, T is linear,
\( \therefore T(a\alpha_1+\alpha_2)=aT(\alpha_1)+T(\alpha_2) \)
​\( =a\beta_1+\beta_2 \)​
​\( \because a\alpha_1+\alpha_2 \)​ is unique,
​\( \therefore a\alpha_1+\alpha_2=T^{-1}(a\beta_1+\beta_2) \)​
​\( \therefore T^{-1}(a\beta_1+\beta_2)=aT^{-1}(\beta_1)+T^{-1}(\beta_2) \)​
Hence, ​\( T^{-1} \)​ is a linear transformation.

Definition (3):

A linear transformation T from V into W is said to be non-singular if \( T(\alpha)=0 \), ​\( \implies \alpha=0, \forall \alpha \in V \)​.
i.e. the null space of T is zero if T is non-singular which concludes that T is one-one iff T is non-singular.

Theorem (2):

Let T be a linear transformation from vector space V into vector space W over the field F. T is non-singular iff T carries each linearly independent subset of V onto a linearly independent subset of W.

Proof:

Suppose that T is non-singular.
Let ​\( S=\{\alpha_1, \alpha_2, … , \alpha_n\} \)​ be a linearly independent subset of a vector space V.
Claim that \( S’=\{T(\alpha_1), T(\alpha_2), … , T(\alpha_n)\} \) is linearly independent.
Suppose that,
\( c_1T(\alpha_1)+c_2T(\alpha_2)+ … +c_nT(\alpha_n)=0 \),          ​\( c_1, c_2, … , c_n \in F \)​
​\( \implies T(c_1\alpha_1, c_2\alpha_2, … , c_n\alpha_n)=0 \)​
​\( \implies c_1\alpha_1, c_2\alpha_2, … , c_n\alpha_n=0 \)​   (​\( \because \)​ T is  non-singular)
​\( \implies c_1=0, c_2=0, … ,c_n=0 \)​          (​\( \because \)​ S is linearly independent)
Thus, ​\( c_1T(\alpha_1)+c_2T(\alpha_2)+ … +c_nT(\alpha_n)=0, \implies c_1=0, c_2=0, … ,c_n=0 \)
Therefore, ​\( S’=\{T(\alpha_1), T(\alpha_2), … , T(\alpha_n)\} \)​ is linearly independent.
Hence, T carries each linearly independent subset of V onto a linearly independent subset of W.
Conversely,
Assume that T carries each linearly independent subset of V onto a linearly independent subset of W.
Claim that T is non-singular.
Suppose that ​\( \alpha \ne 0\in V \)​
Then ​\( \{\alpha\}\subset V \)​ is linearly independent.
​\( \implies \{T(\alpha)\}\subset W \)​ is linearly independent.
​\( \implies T(\alpha)\ne 0 \)​
Thus, ​\( \alpha \ne 0 \implies T(\alpha)\ne 0 \)​
Hence, T is non-singular.

Example:

Let F be a real field and T be a linear transformation defined on ​\( F^2 \)​ given by ​\( T(x_1, x_2)=(x_1+x_2, x_1) \)​. Verify that T is non-singular.

Solution:

\( T(x_1, x_2)=0 \)​
​\( \implies (x_1+x_2, x_1)=0 \)​
​\( \implies x_1+x_2=0, x_1=0 \)​
​\( \implies x_1=0, x_2=0 \)​
​\( \implies (x_1, x_2)=0 \)​
​\( \therefore T(x_1, x_2)=0 \implies (x_1, x_2)=0 \)​
T is non-singular.
Now,
​\( T(x_1, x_2)=(x_1+x_2, x_1)=(s_1, s_2) \)​
​\( \therefore x_1+x_2=s_1, x_1=s_2 \)​
​\( \therefore x_1=s_2, x_2=s_1-s_2 \)​
If ​\( T^{-1} \)​ exists, then
​\( T^{-1}(s_1, s_2)=(x_1, x_2) \)​
​\( T^{-1}(s_1, s_2)=(s_2, s_1-s_2) \)​
Also Read: Linear Transformation Part I – Algebra of Linear Transformation

Definition (4):

Let V and W be vector spaces over the filed F. A linear transformation from V onto W is said to be an isomorphism if
(i) T is one-one
(ii) T is onto
If T is isomorphism then in this case, V is isomorphic to W.

Theorem (3):

Let V be an n-dimensional vector space over the filed F. Then there is an isomorphism for V onto ​\( F^n  (F^n=\{(x_1, x_2, … , x_n) | x_i\in F \ \text{is a vector space}) \)

Proof: 

Let \( B=\{\alpha_1, \alpha_2, …, \alpha_n\} \) be an ordered basis for V.
Then any ​\( \alpha \in V \)​ can be expressed as ​\( \alpha=a_1\alpha_1+a_2\alpha_2+ … +a_n\alpha_n, \forall a_i \in F      \ (1\le i \le n). \)
Define ​\( \theta: V \rightarrow F^n \)​ by ​\( \theta(\alpha)=(a_1, a_2, … , a_n) \)​
Claim: ​\( \theta \)​ is an isomorphism.
Let ​\( \alpha, \beta \in V \)​ and ​\( a \in F \)​
​\( \therefore \alpha=a_1\alpha_1+a_2\alpha_2+ … +a_n\alpha_n, \)​ ​\( \beta=b_1\alpha_1+b_2\alpha_2+ … +b_n\alpha_n, \ a_i, b_i \in F \)​
​\( \therefore \theta(\alpha)=(a_1, a_2, … , a_n) \)​ and ​\( \theta(\beta)=(b_1, b_2, … , b_n) \)​
(i) Consider,
​\( \theta(a\alpha+\beta) \)​​
\( =\theta[a(a_1\alpha_1+a_2\alpha_2+ … +a_n\alpha_n)+(b_1\alpha_1+b_2\alpha_2+ … +b_n\alpha_n)]​ \)
\( =\theta[(aa_1+b_1)\alpha_1+(aa_2+b_2)\alpha_2+ … +(aa_n+b_n)\alpha_n] \)
​\( =(aa_1+b_1, aa_2+b_2, … ,aa_n+b_n) \)​
​\( =a(a_1, a_2, … , a_n)+(b_1, b_2, … , b_n) \)​
​\( =a\theta(\alpha)+\theta(\beta) \)​
​\( \therefore \theta \)​ is linear transformation.
(ii) Suppose that, ​\( \theta(\alpha)=\theta(\beta) \)​
​\( \therefore (a_1, a_2, … , a_n)=(b_1, b_2, … , b_n) \)​
​\( \therefore a_1=b_1, a_2=b_2, … , a_n=b_n \)​
​\( \therefore \alpha=\beta \)​.
Hence, ​\( \theta \)​ is one-one.
(iii) Let ​\( \beta \in F^n \)​.
​\( \therefore \beta=(b_1, b_2, … , b_n) \)​
Take ​\( b_1\alpha_1+b_2\alpha_2+ … +b_n\alpha_n=\alpha \in V \)​
​\( \therefore \theta(\alpha)=\theta(b_1\alpha_1+b_2\alpha_2+ … +b_n\alpha_n) \)​
​\( =(b_1, b_2, … , b_n) \)​
​\( =\beta \)​
​\( \therefore \theta \)​ is onto.
Hence, \( \theta \) is an isomorphism.
i.e. ​\( V\cong F^n \)​.

RELATED ARTICLES

LEAVE A REPLY

Please enter your comment!
Please enter your name here

STAY CONNECTED

2,523FansLike
246FollowersFollow
2,458FollowersFollow

Most Popular

Recent Comments